Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Malaysian Journal of Medicine and Health Sciences ; : 13-17, 2020.
Article in English | WPRIM | ID: wpr-875802

ABSTRACT

@#Introduction: Most patients with malocclusion are given orthodontic leveling therapy with the aim of reducing the vertical discrepancy between teeth. This computational study aims to evaluate the degree of deformation of superelastic NiTi arch wire upon bending at different deflections in a bracket system. Methods: A three-dimensional finite-element model of a wire-bracket system was developed to simulate the bending behavior of superelastic NiTi arch wire in three-brackets configuration. A superelastic subroutine was integrated in the model to anticipate the superelastic behavior of the arch wire. The mid span of the arch wire was loaded to different extent of deflections, ranging from 1.0 to 4.0 mm. The mechanical deformation of the arch wires was accessed from three parameters, in specific the unloading force, the bending stress and the martensite fraction. Results: The superelastic wire deflected at 4.0 mm yielded smaller unloading force than the wire bent at 1.0 mm. The bending stress was highly localized at the wire curvature, with the stress magnitude increased from 465 MPa at 1.0 mm to 951 MPa at 4.0 mm deflection. The martensite volume consistently increased throughout the bending, with a fully transformed martensite was observed as early as 2.0 mm of deflection. The magnitude of bending stress and the volume of fully transformed martensite increased gradually in relation to the wire deflection. Conclusion: The wire-bracket system induced localize wire deformation, hindering complete utilization of superelasticity during orthodontic treatment.

2.
Dental press j. orthod. (Impr.) ; 21(3): 46-55, tab, graf
Article in English | LILACS | ID: lil-787911

ABSTRACT

abstract Objective: This paper analyzed whether nickel-titanium closed coil springs (NTCCS) have a different superelastic (SE) behavior according to activation and whether their force plateau corresponds to that informed by the manufacturer. Methods: A total of 160 springs were divided into 16 subgroups according to their features and activated proportionally to the length of the extensible part (NiTi) of the spring (Y). The force values measured were analyzed to determine SE rates and force plateaus, which were mathematically calculated. These plateaus were compared to those informed by the manufacturer. Analysis of variance was accomplished followed by Tukey post-hoc test to detect and analyze differences between groups. Results: All subgroups were SE at the activation of 400% of Y length, except for: subgroups 4B and 3A, which were SE at 300%; subgroups 4E and 4G, which were SE at 500%; and subgroup 3C, which was SE at 600%. Subgroup 3B did not show a SE behavior. Force plateaus depended on activation and, in some subgroups and some activations, were similar to the force informed. Conclusions: Most of the springs showed SE behavior at 400% of activation. Force plateaus are difficult to compare due to lack of information provided by manufacturers.


resumo Objetivo: o presente artigo analisou se as molas helicoidais fechadas de níquel-titânio apresentam superelasticidade (SE), de acordo com a ativação, e se o platô de força medido corresponde ao informado pelo fabricante. Material e Métodos: 160 molas foram divididas em 16 subgrupos, de acordo com suas características, e foram ativadas proporcionalmente ao comprimento da parte extensível (NiTi) da mola (Y). Os valores de força obtidos foram analisados para determinar as taxas de SE e os platôs de força, os quais foram calculados matematicamente - sendo esses platôs comparados aos informados pelos fabricantes. Uma análise de variância foi realizada, seguida do teste post-hoc de Tukey, para detectar e analisar as diferenças entre os grupos. Resultados: todos os subgrupos apresentaram SE em ativação de 400% do comprimento Y, com exceção dos subgrupos 4B e 3A (que apresentaram SE a 300%), dos subgrupos 4E e 4G (com SE a 500%) e do subgrupo 3C (que apresentou SE na ativação de 600%). O subgrupo 3B não apresentou comportamento superelástico. Os platôs de força dependeram da ativação e em alguns subgrupos, em determinadas ativações, foram semelhantes à força informada pelo fabricante. Conclusões: a maioria das molas apresentou comportamento superelástico na ativação de 400%. Os platôs de força são difíceis de ser comparados, devido à falta de informações por parte dos fabricantes.


Subject(s)
Humans , Orthodontic Wires , Titanium , Dental Alloys , Dental Stress Analysis , Nickel , Stress, Mechanical , Materials Testing , Orthodontic Appliance Design , Elasticity
3.
Rev. bras. odontol ; 69(2): 266-271, Jul.-Dez. 2012. ilus, tab
Article in Portuguese | LILACS | ID: lil-720356

ABSTRACT

As ligas de niquel-titânio (Ni-Ti) são usadas na fabricação de fios ortodônticos devido principalmente a sua maior resiliência e menor módulo de elasticidade quando comparadas com outras ligas metálicas, especialmente o aço inoxidável. O objetivo do presente trabalho foi comparar as propriedades mecânicas em flexão de fios de liga com memória de forma de diferentes fabricantes e lotes. Dois lotes de três fabricantes foram ensaiados em flexão três pontos de acordo com a norma ISO 15841:2006(E). Os resultados mostraram que os fios designados como termoativados geram tensões menores que os fios designados como superelásticos, observou-se variações de até 28% entre fios designados como superelásticos e 31% entre fios designados como termoativados. Na comparação dos lotes do mesmo fabricante observou-se também a não homogeneidade entre os fios.


The nickel-titanium (Ni-Ti) alloys are used in the manufacture of orthodontic wires mainly due to its greater resilience and low modulus of elasticity when compared to other alloys, particularly stainless steel. The aim of this study was to compare the mechanical properties of shape memory alloys wires in three-point bending in different manufacturers. Two lots of three manufacturers were tested in three-point bending according to ISO 15841:2006 (E). The results showed that wires designated as termoactivated generated lower tensions than the designated as superelastic, variations of up to 28% between wires designated as superelastic and 31% between wires d esignated as termoactivated were found. In the manufacturer lots comparison was also not observed homogeneity between wires.


Subject(s)
Dental Alloys , Flexural Strength
4.
Dental press j. orthod. (Impr.) ; 17(3): 71-82, May-June 2012. ilus, tab
Article in English | LILACS | ID: lil-646352

ABSTRACT

OBJECTIVE: A systematic review on nickel-titanium wires was performed. The strategy was focused on Entrez-PubMed-OLDMEDLINE, Scopus and BioMed Central from 1963 to 2008. METHODS: Papers in English and French describing the behavior of these wires and laboratorial methods to identify crystalline transformation were considered. A total of 29 papers were selected. RESULTS: Nickel-titanium wires show exceptional features in terms of elasticity and shape memory effects. However, clinical applications request a deeper knowledge of these properties in order to allow the professional to use them in a rational manner. In addition, the necessary information regarding each alloy often does not correspond to the information given by the manufacturer. Many alloys called "superelastic" do not present this effect; they just behave as less stiff alloys, with a larger springback if compared to the stainless steel wires. CONCLUSIONS: Laboratory tests are the only means to observe the real behavior of these materials, including temperature transition range (TTR) and applied tensions. However, it is also possible to determine in which TTR these alloys change the crystalline structure.

5.
Korean Journal of Orthodontics ; : 432-439, 2007.
Article in Korean | WPRIM | ID: wpr-657170

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the influence of intraoral temperature changes on the orthodontic force level of a superelastic nickel-titanium alloy wire. METHODS: Nickel-titanium archwires of 0.016" x 0.022" thickness were tested with a three point bending test setup, and temperature changes were applied. The force level changes according to temperature changes were measured at a 1.5 mm deflection during the loading phase and a 1.5 mm deflection during the unloading phase from a deflection to 3.1 mm. Ten cycles of thermal cycling from baseline (37 degrees C) to cold (20 degrees C) or hot (50 degrees C) temperature were applied. RESULTS: After thermal cycling, the force level during the loading phase decreased and the force level during the unloading phase increased even after the temperature was changed to the initial 37 degrees C. CONCLUSIONS: The results suggest that the orthodontic force level can not return to the initial force level after temperature changes. When applying superelastic nickel-titanium archwires, we must consider that a lighter force than the loading force and a heavier force than the unloading force will be applied after intraoral temperature changes caused by eating and drinking.


Subject(s)
Alloys , Drinking , Eating
6.
Rio de Janeiro; s.n; 2007. 120 p. ilus, tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: lil-518362

ABSTRACT

Objetivou-se nessa pesquisa comparar oito tipos de fios de NiTi superelásticos e termoativos, de seis empresas comerciais (GAC, TP, ORMCO, MASEL, MORELLI e UNITEK) àqueles com adição de cobre (CuNiTi 27 e 35OC, ORMCO), observando se as propriedades mecânicas dos dois últimos justificariam sua escolha clínica. Para tal foram realizados ensaios de tração e microscopia eletrônica de varredura. Os ensaios de tração foram realizados em máquina de ensaios mecânicos da marca EMIC, modelo DL10000, de 10 toneladas de capacidade, no Instituto Militar de Engenharia (IME). A composição química e a topografia superficial dos fios foram determinadas através da microscopia eletrônica de varredura em microscópio da marca JEOL, modelo JSM-5800 LV com sistema de microanálise EDS (energy dispersive spectroscopy). Os resultados mostraram que, de forma geral, os fios de NiTi termoativados apresentaram cargas mais suaves de desativação em relação aos superelásticos. Entre os fios que apresentaram as cargas biologicamente mais adequadas de desativação estão os termoativados da GAC e da UNITEK. Entre os fios de NiTi superelásticos, os de CuNiTi 27ºC da ORMCO foram os que apresentaram as cargas mais suaves de desativação, sendo semelhantes, estatisticamente (ANOVA), às apresentadas pelos fios de NiTi termoativados da UNITEK para a deformação de 4%. Quando comparados os fios de CuNiTi a 27 e a 35ºC, observou-se que os primeiros apresentaram forças de desativação de, aproximadamente, 1/3 das apresentadas pelos últimos, para a deformação de 4%. Quando analisada a microscopia eletrônica de varredura de superfície, os fios de NiTi superelásticos que apresentaram melhores acabamentos foram os da MASEL e MORELLI e os que apresentaram os piores acabamentos foram os de NiTi e CuNiTi 27ºC da ORMCO...


Leveling and aligning orthodontic wires must be able to generate light and continuous forces. Thus need to have high springback and flexibility. For this purpose it was suggested a variety of supereslatic and termoactivated Nickel-Titanium (NiTi) wires that may offer a load-deformation curve, in a constant plataform. Copper NiTi wires are presented as exhibiting better thermoactivating properties for optimum-forces system with better dental movement control. The aim of this study was to compare 8 NiTi superelastic and thermoactivated wires of six different brands (GAC, TP, ORMCO, MASEL, MORELLI and UNITEK) to Copper addicted wires (CuNiTi 270C and 350C, ORMCO) to verify if the mechanical properties of Copper NiTi would support it’s clinical use. Stress-strain tests were done in Engeneering Military Institute (IME-Brazil), through test machine (EMIC- DL 10000 model). Scanning electronic microscope with energy dispersive spectroscopy (JOEL, JSM-5800 LV model) was used to determine chemical composition and superficial topography of the wires. Results showed that, in general, thermoactivated NiTi wires exhibited lower deactivation loads when compared to NiTi superelastics. Among the thermoactivated, the GAC and UNITEK ones are the lighter ones. Among the superelastics, the Copper NiTi 270C (ORMCO) were the lighter ones, statistically similar (ANOVA) to thermoactivated NiTi from UNITEK, for 4% strain. Once Copper NiTi 270C showed deactivated loads 62% lower than Copper NiTi 350C , under 4% strain. As regard to Scanning Electronic Microscopy results for superelastic NiTi wires, better superficial burnishing were found for MASEL and MORELLI ones...


Subject(s)
Copper , Nickel , Orthodontic Wires , Orthodontics/methods , Titanium , Analysis of Variance , Calorimetry , Elasticity , Microscopy, Electron, Scanning , Tensile Strength
7.
Korean Journal of Orthodontics ; : 381-387, 2005.
Article in English | WPRIM | ID: wpr-651477

ABSTRACT

The aim of this study was to compare the clinical performance of 4 types of orthodontic wires, indicated for initial tooth alignment: stainless steel, multistranded steel, superelastic and thermoactivated nickel-titanium. A prospective randomized clinical trial was conducted on a sample of 45 patients, at the Dental School of the State University of Rio de Janeiro, Brazil. Fixed appliances were fitted and study casts were obtained from each patient. Randomly, the wires were allocated as follows: 26 dental arches for superelastic NiTi wires, 22 for stainless steel, 22 for multistranded and 20 for thermoactivated archwires. After 8 weeks, the archwires were removed and impressions for study casts were taken again. Using a 3D digitization technique of defined anatomical points on the study cast crowns, a Dental Irregularity Index (DII) was created for each study cast. The difference between DII before and after the archwire insertion expressed the aligning effect of the wires. ANOVA tests were employed to evaluate the anatomical point approximation (positive DII) and separation (negative DII), for each area of the dental arches: upper and lower whole arch and anterior arch. Results showed no significant difference between the different archwires.


Subject(s)
Humans , Brazil , Crowns , Dental Arch , Orthodontic Wires , Prospective Studies , Schools, Dental , Stainless Steel , Steel , Tooth
8.
Korean Journal of Orthodontics ; : 465-474, 2003.
Article in English | WPRIM | ID: wpr-643532

ABSTRACT

The great variety of commercial brands of orthodontic wires available on the market, stimulated by the so called superior wires (nickel titanium with shape memory effect and superelastic nickel titanium), makes the professional choice for a suitable and less expensive material difficult. The in vitro study of the mechanical properties of the orthodontic wires acts as an auxiliary tool for the professional. In this paper, a comparative study of mechanical properties was made, using stress strain tests for 4 types of orthodontic wires (conventional stainless steel, multistranded steel, superelastic nickel titanium and thermoactivated nickel titanium) separated into 5 groups. A series of 6 tests were tested for each group of wires. Initially, each group was tested 3 times until the wires broke. Furthermore, 3 more tests for each group were performed, stretching the wires under standardized activation loads, for a reliable comparison of their mechanical properties, during loading and unloading. t tests were applied to check differences among the groups. In vitro, the results suggest that regarding the mechanical properties supposedly desirable for physiological teeth movement, such as resilience, elasticity modulus, strength liberated during unloading, and the way that strength is liberated, thermoactivated nickel titanium wires, acting under mouth temperature, seems to be a good choice, followed by superelastic nickel titanium, multistranded stainless steel, and conventional stainless steel. Superelasticity was demonstrated for superelastic nickel titanium wires. When at 37degrees C, thermoactivated nickel titanium wires showed shape memory effect, showing that temperature is important for enhancing the mechanical properties.


Subject(s)
Alloys , Elastic Modulus , Memory , Mouth , Nickel , Orthodontic Wires , Stainless Steel , Steel , Titanium , Tooth
9.
Korean Journal of Orthodontics ; : 187-200, 1995.
Article in Korean | WPRIM | ID: wpr-657119

ABSTRACT

To estimate the characteristics of Korean Ni-Ti alloy orthodontic wire, this study investigated compositions, tensile properties, bending properties, heat treatment effects, and ion releasing degrees, and compared these characteristics to those of the imported Ni-Ti alloy wire. The results obtained are as follows; 1. Ti and Ni elements in ORTHOLLOY were in a range showing superelasticity, and there was a little difference in the Ni and Ti contents of ORTHOLLOY as compared with those of SENTALLOY. 2. The results of the tensile test concerning ORTHOLLOY exhibited a superelastic effect, indicating an area of a definite amount of stress in spite of the changes in the range from 2% to 8% in the strain rate. 3. ORTHOLLOY presented higher load values than SENTALLOY in the same deflection values when the wire was tested in three-point bending. A load range displaying a superelastic effect was 80-100g, 140-180g, and l50-200g respectively, in wire diameters of 0.014", 0.016", and 0.018". 4. By heat treatments at 400degreesC and at 500degreesC, a load range showing the effect of superelasticity was lessened by the duration of the heat treatment time. The superelastic effect was destroyed as a result of the 10 minutes heat treatment at 600degreesC. 5. The quantity of the Ni ion released from ORTHOLLOY, tended to be greater than the amount of released Ni ion in SENTALLOY. The Co ion released was very little(<0.01ppm) in SENTALLOY and ORTHOLLOY irrespective of the lapse of time. Released Ni ions on the 1st day were at the maximum, and the releasing rate showed plateaus after three days. 6. The surface morphology of SENTALLOY was relatively regular irrespective of the lapse of time, and the corrosion tendency was not observed. However, the surface morphology of ORTHOLLOY was rather irregular and showed pitting corrosion after immersion.


Subject(s)
Alloys , Corrosion , Hot Temperature , Immersion , Ions , Orthodontic Wires
SELECTION OF CITATIONS
SEARCH DETAIL